Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

1-(3-Methoxybenzoyl)-3,3-diethylthiourea

Angel Dago Morales, ${ }^{\text {a }}$ Héctor Novoa de Armas, ${ }^{\text {b }}$ * Norbert M. Blaton, ${ }^{\text {b }}$ Oswald M. Peeters, ${ }^{\text {b }}$ Camiel J. De Ranter, ${ }^{\text {b }}$ Heidy Márquez ${ }^{\text {c }}$ and Ramón Pomés Hernández ${ }^{\text {d }}$
${ }^{\text {a }}$ Química Analítica, Centro de Investigaciones del Petróleo, Washington No 169 esquina a Churruca, Cerro, Código Postal 12000, Apartado Postal 167, Ciudad de la Habana, Cuba, ${ }^{\mathbf{b}}$ Laboratorium voor Analytische Chemie en Medicinale Fysicochemie, Faculteit Farmaceutische Wetenschappen, Katholieke Universiteit Leuven, Van Evenstraat 4, B-3000 Leuven, Belgium, ${ }^{\text {c }}$ Facultad de Química, Universidad de la Habana, Ciudad de la Habana 10400, Cuba, and ${ }^{\text {d }}$ Centro Nacional de Investigaciones Científicas, División de Química, Apartado 6990, Ciudad de la Habana, Cuba
Correspondence e-mail: hector.novoa@farm.kuleuven.ac.be

Received 14 January 2000
Accepted 26 January 2000
The title compound, $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$, crystallizes in the thioamidic form. The molecules are connected by $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ interactions forming dimers with $\mathrm{N} \cdots \mathrm{S}$ and $\mathrm{H} \cdots \mathrm{S}$ distances of 3.487 (4) and $2.76 \AA$, respectively.

Comment

Among organic sulfur compounds, thioureas and its derivatives are of relevant importance. These compounds have been introduced in almost every branch of chemistry and are commercialized as dyes, photographic films, elastomery plastics and textiles (Chynoweth, 1955). In chemical research work they have been greatly used as intermediates in the synthesis and characterization of organic compounds and in the separation of branched hydro-C atoms in organic mixtures (Gabriele, 1995; Rodríguez et al., 1995). In order to continue these studies we have prepared derivatives of acylthioureas (Rodríguez et al., 1995). The crystal structure of 1-(3-methoxybenzoyl)-3,3-diethylthiourea, (I), has been determined to understand better the role of the geometry of the anions in the reactivity of alkylation reactions with respect to the substitutes present at nitrogen positions 1 and 3.

(I)

The title compound crystallizes in the thioamidic form. The $\mathrm{S}, \mathrm{C} 2, \mathrm{~N} 1, \mathrm{C} 1, \mathrm{O} 1$ moiety deviates extensively from planarity. The torsion angles $\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$ and $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{S}$ are $0.8(6)$ and $-123.6(3)^{\circ}$, respectively. The molecule is stabilized in the s-cisoid, s-transoid conformation with respect
to the imino $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$. The bond distance $\mathrm{C} 2-\mathrm{N} 2$ has a double-bond character, but the bonds distances $\mathrm{C} 2-\mathrm{N} 1$ and $\mathrm{C} 1-\mathrm{N} 1$ correspond to a single bond $\mathrm{C} s p^{2}-\mathrm{N} s p^{2}$. This fact indicates that there is π conjugation only along the $\mathrm{S}-\mathrm{C} 2-$ N 2 system, but not along $\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$ and $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$ as found in 1-benzoyl-3-n-propylthiourea (Dago et al., 1989) and 1-(4-methoxybenzoyl)-3-phenylthiourea (Fajardo et al., 1990). The p atomic orbital of the O 2 atom in the methoxy group overlaps with the π system of the phenyl ring, as evidenced by the shortening of the $\mathrm{O} 2-\mathrm{C} 9$ bond distance [1.368 (4) \AA]. This also results in the coplanarity of the methoxy group with the phenyl ring $\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 2-\mathrm{C} 13=6.4(5)^{\circ}$. The difference in the values of $\mathrm{C} 10-\mathrm{C} 9-\mathrm{O} 2=115.5(3)$ and $\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 2=$ $124.1(3)^{\circ}$ is in agreement with the distortion already observed in anisoles as shown by Domiano et al. (1979). The molecules are held together by $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ interactions forming dimers with $\mathrm{N} 1 \cdots \mathrm{~S}$ and $\mathrm{H} 1 \cdots \mathrm{~S}$ distances of 3.487 (4) and $2.76 \AA$, respectively.

Figure 1
Plot showing the atomic numbering scheme. Displacement ellipsoids are drawn at 50% probability for non-H atoms.

Experimental

The compound was prepared by the reaction of diethylamine with 3-methoxybenzoyl isothiocyanate obtained in situ by a method already published (Rodríguez et al., 1995). Recrystallization from ethanol gave suitable crystals for X-ray analysis.

Crystal data
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$
$M_{r}=266.36$
Triclinic, $P \overline{1}$
$a=7.754$ (4) £
$b=8.949$ (8) \AA
$c=11.251(7) \AA$
$\alpha=78.48(6)^{\circ}$
$\beta=70.26(4)^{\circ}$
$\gamma=70.06(6)^{\circ}$
$V=687.6(8) \AA^{3}$
Data collection
Stoe Stadi-4 four-circle diffractometer
ω scans
Absorption correction: empirical
(EMPIR; Stoe, 1992)
$T_{\text {min }}=0.833, T_{\text {max }}=0.924$
3005 measured reflections
2423 independent reflections
1803 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.286 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=2-50^{\circ} \\
& \mu=0.232 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Prism, colourless } \\
& 0.61 \times 0.57 \times 0.34 \mathrm{~mm}
\end{aligned}
$$

$$
R_{\mathrm{int}}=0.016
$$

$$
\theta_{\max }=25^{\circ}
$$

$$
h=-9 \rightarrow 1
$$

$$
k=-10 \rightarrow 10
$$

$$
l=-13 \rightarrow 13
$$

2 standard reflections frequency: 60 min intensity decay: $<2.0 \%$

Refinement

Refinement on F^{2}

$R(F)=0.060$
$w R\left(F^{2}\right)=0.184$
$S=1.030$
2423 reflections
163 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1092 P)^{2}\right. \\
& \quad+0.4967 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.48 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.43 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{S}-\mathrm{C} 2$	$1.676(4)$	$\mathrm{N} 1-\mathrm{C} 2$	$1.403(4)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.212(4)$	$\mathrm{N} 2-\mathrm{C} 2$	$1.327(5)$
$\mathrm{O} 2-\mathrm{C} 9$	$1.368(4)$	$\mathrm{N} 2-\mathrm{C} 3$	$1.471(5)$
$\mathrm{O} 2-\mathrm{C} 13$	$1.415(5)$	$\mathrm{N} 2-\mathrm{C} 5$	$1.470(6)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.388(4)$		
			$118.6(3)$
$\mathrm{C} 9-\mathrm{O} 2-\mathrm{C} 13$	$117.8(3)$	$\mathrm{S}-\mathrm{C} 2-\mathrm{N} 1$	$117.2(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	$122.3(3)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 2$	$124.2(2)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 3$	$120.2(3)$	$\mathrm{S}-\mathrm{C} 2-\mathrm{N} 2$	$113.6(4)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 5$	$123.4(3)$	$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$	$115.5(3)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 5$	$116.3(4)$	$\mathrm{O} 2-\mathrm{C} 9-\mathrm{C} 10$	$124.1(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$	$121.5(3)$	$\mathrm{O} 2-\mathrm{C} 9-\mathrm{C} 8$	
			$0.8(6)$
$\mathrm{C} 13-\mathrm{O} 2-\mathrm{C} 9-\mathrm{C} 8$	$-6.4(5)$	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{O} 1$	
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{S}$	$-123.6(3)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{~S}^{\mathrm{i}}$	0.86	2.76	$3.487(4)$	143
$\mathrm{C} 3-\mathrm{H} 3 B \cdots \mathrm{~S}$	0.97	2.56	$3.024(5)$	109
$\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{O} 1$	0.97	2.49	$2.979(8)$	111
$\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{~N} 1$	0.97	2.31	$2.794(8)$	110

Symmetry code: (i) $2-x,-y, 1-z$.

H atoms were calculated geometrically and included in the refinement, but were restrained to ride on their parent atoms. The isotropic displacement parameters of the H atoms were fixed to 1.3
times $U_{\text {eq }}$ of their parent atoms. The C6 atom of the terminal methyl group was located from the ΔF map and found to be disordered; it was placed in two positions (C6A and C6B), with 60 and 40% occupancy, respectively. The H atoms of the disordered C 6 atom were not located.

Data collection: DIF4 (Stoe, 1992); cell refinement: DIF4; data reduction: REDU4 (Stoe, 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: PLATON (Spek, 1990), PARST (Nardelli, 1983, 1995) and PARSTCIF (Nardelli, 1991).

HN wants to thank KU Leuven (Belgium) for IRO scholarships.

[^0]
References

Bergerhoff, G. (1996). DIAMOND. Gerhad-Domagk-Strasse 1, 53121 Bonn, Germany.
Chynoweth, D. S. (1955). Chem. Rev. 55, 181-228.
Dago, A., Shepelev, Y., Fajardo, F., Alvarez, F. \& Pomés, R. (1989). Acta Cryst. C45, 1192-1194.
Domiano, P., Nardelli, M., Balsamo, A., Macchia, B. \& Macchia, F. (1979). Acta Cryst. B35, 1363-1372.
Fajardo, F., Guardiola, R., Dago, A. \& Pomés, R. (1990). Rev. CENIC Cienc. Quím. 21, 210-213.
Gabriele, B. (1995). J. Organomet. Chem. 503, 21-28.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Nardelli, M. (1991). PARSTCIF. University of Parma, Italy.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Rodríguez, Y. E., Cardeña, M. V., Plutín, A. M., Macías, A. C. \& Del Bosque, J. (1995). An. Quím. 91, 696-701. (In Spanish.)

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Stoe \& Cie (1992). EMPIR (version 1.2), DIF4 (version 7.09/DOS) and REDU4 (version 7.03). Stoe \& Cie, Darmstadt, Germany.

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1453). Services for accessing these data are described at the back of the journal.

